Fine-tuned LSTM-Based Model for Efficient Honeypot-Based Network Intrusion Detection System in Smart Grid Networks
Author:
Affiliation:
1. College of Science and Engineering, Hamad Bin Khalifa University,Division of Information and Computing Technology,Doha,Qatar
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/10018924/10018967/10019245.pdf?arnumber=10019245
Reference20 articles.
1. A Dynamic Recommendation-based Trust Scheme for the Smart Grid
2. A novel state estimation method for smart grid under consecutive denial of service attacks;li;IEEE Systems Journal,2022
3. An Intrusion Detection Model based on a Convolutional Neural Network
4. Analysis of Machine Learning Techniques Based Intrusion Detection Systems
5. Machine Learning and Deep Learning Approaches for CyberSecurity: A Review
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. FedPot: A Quality-Aware Collaborative and Incentivized Honeypot-Based Detector for Smart Grid Networks;IEEE Transactions on Network and Service Management;2024-08
2. The Role of Deep Learning in Advancing Proactive Cybersecurity Measures for Smart Grid Networks: A Survey;IEEE Internet of Things Journal;2024-05-01
3. Deep Learning in the Fast Lane: A Survey on Advanced Intrusion Detection Systems for Intelligent Vehicle Networks;IEEE Open Journal of Vehicular Technology;2024
4. Detection of cyber-attacks on smart grids using improved VGG19 deep neural network architecture and Aquila optimizer algorithm;Signal, Image and Video Processing;2023-11-17
5. Double-Edged Defense: Thwarting Cyber Attacks and Adversarial Machine Learning in IEC 60870-5-104 Smart Grids;IEEE Open Journal of the Industrial Electronics Society;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3