Decision Fusion Scheme Based on Mode Decomposition and Evidence Theory for Fault Diagnosis of Drilling Process
Author:
Affiliation:
1. School of Automation, China University of Geosciences, Wuhan, China
2. Graduate School of Environment and Energy Engineering, Waseda University, Tokyo, Japan
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hubei Province, China
Higher Education Discipline Innovation Project
China Scholarship Council scholarship
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Computer Science Applications,Information Systems,Control and Systems Engineering
Link
http://xplorestaging.ieee.org/ielx7/9424/10411967/10148840.pdf?arnumber=10148840
Reference32 articles.
1. A New Hybrid Bat Algorithm and its Application to the ROP Optimization in Drilling Processes
2. Risk analysis of well blowout scenarios during managed pressure drilling operation
3. Low-Rank Characteristic and Temporal Correlation Analytics for Incipient Industrial Fault Detection With Missing Data
4. Slow Down to Go Better: A Survey on Slow Feature Analysis
5. A generalized probabilistic monitoring model with both random and sequential data
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Full condition monitoring of geological drilling process based on just-in-time learning-aided slow feature analysis;Journal of Process Control;2024-10
2. Bearing Fault Diagnosis Method Based on Multiple-Level Feature Tensor Fusion;IEEE Sensors Journal;2024-07-15
3. Evidential Ensemble Preference-Guided Learning Approach for Real-Time Multimode Fault Diagnosis;IEEE Transactions on Industrial Informatics;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3