An Accurate, Reproducible and Robust Model to Predict the Rutting of Asphalt Pavement: Neural Networks Coupled With Particle Swarm Optimization
Author:
Affiliation:
1. Department of Civil and Environmental Engineering, National Center for Transportation Infrastructure Durability & Life-Extension (TriDurLE), Washington State University, Pullman, WA, USA
Funder
Idaho Transportation Department
Federal Highway Administration
National Center for Transportation Infrastructure Durability & Life-Extension (TriDurLE)
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Computer Science Applications,Mechanical Engineering,Automotive Engineering
Link
http://xplorestaging.ieee.org/ielx7/6979/9942712/09729138.pdf?arnumber=9729138
Reference40 articles.
1. Evaluation of Effects of Weather Information on Winter Maintenance Costs
2. Sensitivity Analysis of the Artificial Neural Network Outputs in Friction Stir Lap Joining of Aluminum to Brass
3. An Analytical and Numerical Sensitivity and Robustness Analysis of Wave Energy Control Systems
4. Is Robustness the Cost of Accuracy? – A Comprehensive Study on the Robustness of 18 Deep Image Classification Models
5. The generalization of ‘STUDENT’s’ problem when several different population varlances are involved;welch;Biometrika,1947
Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Explainable highway performance degradation prediction model based on LSTM;Advanced Engineering Informatics;2024-08
2. Probabilistic rutting model using NGBoost and SHAP: Incorporating other performance indicators;Construction and Building Materials;2024-08
3. Enhancing local road pavement condition prediction using Bayesian-optimized ensemble machine learning and adaptive synthetic sampling technique;International Journal of Pavement Engineering;2024-07-10
4. Short-Term Predictions of Asphalt Pavement Rutting Using Deep-Learning Models;Journal of Transportation Engineering, Part B: Pavements;2024-06
5. Predicting Rutting Development Using Machine Learning Methods Based on RIOCHTrack Data;Applied Sciences;2024-04-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3