A Novel Data-Driven Approach for Solving the Electric Vehicle Charging Station Location-Routing Problem
Author:
Affiliation:
1. Institute of Industrial Engineering, National Taiwan University, Taipei, Taiwan
2. Department of Statistics and the Department of Computer Science, Informatics Institute, University of Florida, Gainesville, FL, USA
Funder
Research Grant
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Computer Science Applications,Mechanical Engineering,Automotive Engineering
Link
http://xplorestaging.ieee.org/ielx7/6979/9972869/09868264.pdf?arnumber=9868264
Reference61 articles.
1. Optimal routing for electric vehicle charging systems with stochastic demand: A heavy traffic approximation approach
2. MORP
3. Routing and charging locations for electric vehicles for intercity trips
4. Battery swap station location-routing problem with capacitated electric vehicles
5. Multiple charging station location-routing problem with time window of electric vehicle;wang;J Eng Sci Technol Rev,2015
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Charging Station Siting and Sizing Considering Uncertainty in Electric Vehicle Charging Demand Distribution;IEEE Transactions on Intelligent Transportation Systems;2024-09
2. Stratified p-Hub Median and Hub Location Problems: Models and Solution Algorithms;IEEE Transactions on Intelligent Transportation Systems;2024-09
3. Towards Integrated Energy-Communication-Transportation Hub: A Base-Station-Centric Design in 5G and Beyond;2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS);2024-07-23
4. Research on optimization algorithms for localization and capacity determination of chargers considering the spatiotemporal distribution of electric vehicles;Scientific Reports;2024-07-02
5. Optimizing Electric Vehicle Charging Stations and Charging Ports for Highways and Expressways;The 15th ACM International Conference on Future and Sustainable Energy Systems;2024-05-31
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3