A New Method for Automated Monitoring of Road Pavement Aging Conditions Based on Recurrent Neural Network
Author:
Affiliation:
1. Institute of Remote Sensing and Geographic Information System, Peking University, Beijing, China
2. Department of Geography and Environmental Management, University of Waterloo, Waterloo, Canada
Funder
National Foundation of Natural Science of China
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Computer Science Applications,Mechanical Engineering,Automotive Engineering
Link
http://xplorestaging.ieee.org/ielx7/6979/9972869/09896810.pdf?arnumber=9896810
Reference59 articles.
1. Autonomous Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types
2. Road Damage Detection and Classification Using Deep Neural Networks with Smartphone Images
3. Monitoring Asphalt Pavement Aging and Damage Conditions from Low-Altitude UAV Imagery Based on a CNN Approach
4. A Deep Learning-Based Approach for Road Pothole Detection in Timor Leste
5. Deep Convolutional Neural Networks with transfer learning for computer vision-based data-driven pavement distress detection
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The performance monitoring system for a hydrostatic turntable: an improved intelligent algorithm based on the IPSO-NN model;Industrial Lubrication and Tribology;2024-09-06
2. A Review of Computer Vision-Based Crack Detection Methods in Civil Infrastructure: Progress and Challenges;Remote Sensing;2024-08-09
3. CBAM-Optimized Automatic Segmentation and Reconstruction System for Monocular Images With Asphalt Pavement Potholes;IEEE Transactions on Intelligent Transportation Systems;2024-08
4. Multivariable correlation feature network construction and health condition assessment for unlabeled single-sample data;Engineering Applications of Artificial Intelligence;2024-07
5. An annotated street view image dataset for automated road damage detection;Scientific Data;2024-04-22
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3