A Federated Learning-Based Edge Caching Approach for Mobile Edge Computing-Enabled Intelligent Connected Vehicles
Author:
Affiliation:
1. School of Computer and Artificial Intelligence, Wuhan University of Technology, Wuhan, China
2. School of Management, Wuhan University of Technology, Wuhan, China
Funder
National Natural Science Foundation of China
Science and Technology on Information Systems Engineering Laboratory of National University of Defense Technology
Key Laboratory of Southeast Coast Marine Information Intelligent Perception and Application of Ministry of Natural Resources
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Computer Science Applications,Mechanical Engineering,Automotive Engineering
Link
http://xplorestaging.ieee.org/ielx7/6979/10057093/09966317.pdf?arnumber=9966317
Reference27 articles.
1. Low-latency edge cooperation caching based on base station cooperation in SDN based MEC
2. Intermediate data placement and cache replacement strategy under Spark platform
3. Mobility-Aware Proactive Edge Caching for Connected Vehicles Using Federated Learning
4. Federated Learning Based Proactive Content Caching in Edge Computing
5. Deep Reinforcement Learning-Based Edge Caching in Wireless Networks
Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep reinforcement learning based controller placement and optimal edge selection in SDN-based multi-access edge computing environments;Journal of Parallel and Distributed Computing;2024-11
2. Federated deep reinforcement learning for task offloading and resource allocation in mobile edge computing-assisted vehicular networks;Journal of Network and Computer Applications;2024-09
3. Mobility-aware proactive video caching based on asynchronous federated learning in mobile edge computing systems;Applied Soft Computing;2024-09
4. Computation Offloading for Integrated Satellite-Terrestrial Internet of Vehicles in 6G Edge Network: A Cooperative Stackelberg Game;IEEE Transactions on Intelligent Transportation Systems;2024-08
5. Caching-at-STARS: The Next Generation Edge Caching;IEEE Transactions on Wireless Communications;2024-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3