Short-term Load Forecasting Method Based on Artificial Intelligence Highway Neural Network

Author:

Zhang Jinjin1,Wang Tao2,Wu Junyong1,Zhu Hainan2,Lan Dong1,Li Fengshuo2

Affiliation:

1. Electrical Engineering College Beijing Jiaotong University,Beijing,China

2. State Grid Shandong Electric Power Company Weifang Power Supply Company,Planning and Development Department,Weifang,China

Funder

Science and Technology Project of State Grid Shandong Electric Power Company

Publisher

IEEE

Reference18 articles.

1. Research on Short-term Load Forecasting Based on Data Mining;sun;Tsinghua University,2004

2. Weather sensitive short-term load forecasting using artificial neural networks and time series;karaki;International Journal of Power and Energy Systems,2019

3. RBF-NN short-term load forecasting model considering the comprehensive influence factors of demand response;zhang;Proceedings of the CSEE,0

4. Short-term load forecasting method based on load characteristic clustering and Elastic Net analysis;jin;Electric Power,2020

5. User classification and power consumption behavior analysis based on cluster analysis;xu;Shanxi Electric Power,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3