Fault Location Based on Voltage Measurement at Secondary Side of Low-Voltage Transformer in Distribution Network
Author:
Affiliation:
1. College of Electrical Engineering, Sichuan University, Chengdu, China
2. Department of Rail Transit, Sichuan Vocational and Technical College of Communications, Chengdu, China
Funder
China National Key Research and Development Program
Natural Science Foundation of Sichuan
full-time Postdoctoral Research and Development Fund of Sichuan University in China
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Instrumentation
Link
http://xplorestaging.ieee.org/ielx7/19/9717300/09865989.pdf?arnumber=9865989
Reference19 articles.
1. Fault location method for distribution networks using smart meters
2. Voltage Sag Data Utilization for Distribution Fault Location
3. Voltage-Sag-Profiles-Based Fault Location in High-Speed Railway Distribution System
4. Sparse Voltage Measurement-Based Fault Location Using Intelligent Electronic Devices
5. Earth fault location based on evaluation of voltage sag at secondary side of medium voltage/low voltage transformers
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Sparse Bayesian Learning-Based Topology Reconstruction Under Measurement Perturbation for Fault Location;IEEE Transactions on Instrumentation and Measurement;2024
2. An Improved Bayesian Learning Method for Distribution Grid Fault Location and Meter Deployment Optimization;IEEE Transactions on Instrumentation and Measurement;2024
3. Sparse Overcomplete Representation Fault Location Model in Distribution Networks and Efficient Solution Using FastLaplace Bayesian;IEEE Transactions on Instrumentation and Measurement;2024
4. Transmission line fault classification based on spatiotemporal characteristic analysis with global and local discriminant analysis;Engineering Science and Technology, an International Journal;2023-09
5. Graph Learning Empowered Situation Awareness in Internet of Energy With Graph Digital Twin;IEEE Transactions on Industrial Informatics;2023-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3