Bi-LSTM-Based Two-Stream Network for Machine Remaining Useful Life Prediction
Author:
Affiliation:
1. Agency for Science, Technology and Research (A*STAR), Institute for Infocomm Research, Singapore
2. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
Funder
Agency for Science, Technology and Research (A*STAR) under Career Development Award
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Instrumentation
Link
http://xplorestaging.ieee.org/ielx7/19/9717300/09758765.pdf?arnumber=9758765
Reference38 articles.
1. KDnet-RUL: A Knowledge Distillation Framework to Compress Deep Neural Networks for Machine Remaining Useful Life Prediction
2. A Weighted Deep Domain Adaptation Method for Industrial Fault Prognostics According to Prior Distribution of Complex Working Conditions
3. A multimodal and hybrid deep neural network model for Remaining Useful Life estimation
4. Long short-term memory for machine remaining life prediction
5. Dimensionality Reduction by Learning an Invariant Mapping
Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Human Gait phases recognition based on multi-source data fusion and BILSTM attention neural network;Measurement;2024-10
2. A dual-stream spatio-temporal fusion network with multi-sensor signals for remaining useful life prediction;Journal of Manufacturing Systems;2024-10
3. Contrastive BiLSTM-enabled Health Representation Learning for Remaining Useful Life Prediction;Reliability Engineering & System Safety;2024-09
4. Toward Proactive Maintenance: A Multi-Tiered Architecture for Industrial Equipment Health Monitoring and Remaining Useful Life Prediction;International Journal of Software Engineering and Knowledge Engineering;2024-08-30
5. Combined improved tuna swarm optimization with graph convolutional neural network for remaining useful life of engine;Quality and Reliability Engineering International;2024-08-28
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3