Multiscale Wavelet Prototypical Network for Cross-Component Few-Shot Intelligent Fault Diagnosis
Author:
Affiliation:
1. Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, China
2. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China
Funder
Key-Area and Development Program of Guangdong Province
National Natural Science Foundation of China
China Post-Doctoral Science Foundation
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Instrumentation
Link
http://xplorestaging.ieee.org/ielx7/19/10012124/09999323.pdf?arnumber=9999323
Reference38 articles.
1. A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults
2. Semi-supervised meta-learning networks with squeeze-and-excitation attention for few-shot fault diagnosis
3. Cross-Category Mechanical Fault Diagnosis Based on Deep Few-Shot Learning
4. An intelligent fault diagnosis model based on deep neural network for few-shot fault diagnosis
5. Data augmentation for rolling bearing fault diagnosis using an enhanced few-shot Wasserstein auto-encoder with meta-learning
Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A relationship-aware calibrated prototypical network for fault incremental diagnosis of electric motors without reserved samples;Reliability Engineering & System Safety;2024-12
2. Interpretable modulated differentiable STFT and physics-informed balanced spectrum metric for freight train wheelset bearing cross-machine transfer fault diagnosis under speed fluctuations;Advanced Engineering Informatics;2024-10
3. Few-shot fault diagnosis of rolling bearing via mutual centralized learning combining simple and parameter-free attention;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2024-09-09
4. Few-shot fault diagnosis of switch machine based on data fusion and balanced regularized prototypical network;Engineering Applications of Artificial Intelligence;2024-09
5. Few-shot fault diagnosis of turnout switch machine based on flexible semi-supervised meta-learning network;Knowledge-Based Systems;2024-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3