Multisource Domain Feature Adaptation Network for Bearing Fault Diagnosis Under Time-Varying Working Conditions
Author:
Affiliation:
1. School of Rail Transportation, Soochow University, Suzhou, China
Funder
National Natural Science Foundation of China
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Instrumentation
Link
http://xplorestaging.ieee.org/ielx7/19/9717300/09761066.pdf?arnumber=9761066
Reference42 articles.
1. Deep domain confusion: Maximizing for domain invariance;tzeng;arXiv 1412 3474,2014
2. Globally Localized Multisource Domain Adaptation for Cross-Domain Fault Diagnosis With Category Shift
3. Multi-source transfer learning network to complement knowledge for intelligent diagnosis of machines with unseen faults
4. A New Multiple Source Domain Adaptation Fault Diagnosis Method Between Different Rotating Machines
5. Aligning Domain-Specific Distribution and Classifier for Cross-Domain Classification from Multiple Sources
Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Reserving embedding space for new fault types: A new continual learning method for bearing fault diagnosis;Reliability Engineering & System Safety;2024-12
2. Multi-source domain adaptation using diffusion denoising for bearing fault diagnosis under variable working conditions;Knowledge-Based Systems;2024-10
3. Multi-target domain adaptation intelligent diagnosis method for rotating machinery based on multi-source attention mechanism and mixup feature augmentation;Reliability Engineering & System Safety;2024-10
4. Cloud-edge collaborative transfer fault diagnosis of rotating machinery via federated fine-tuning and target self-adaptation;Expert Systems with Applications;2024-09
5. Integrating intrinsic information: A novel open set domain adaptation network for cross-domain fault diagnosis with multiple unknown faults;Knowledge-Based Systems;2024-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3