Health Condition Identification of Rolling Element Bearing Based on Gradient of Features Matrix and MDDCs-MRSVD
Author:
Affiliation:
1. School of Mechanical and Electronical Engineering, Lanzhou University of Technology, Lanzhou, China
2. College of Physics and Electromechanical Engineering, Hexi University, Zhangye, China
3. Gansu Computing Center, Lanzhou, China
Funder
National Natural Science Foundation of China
Science and Technology Projects of Gansu Province
Key Laboratory of Cloud Computing of Gansu Province
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Instrumentation
Link
http://xplorestaging.ieee.org/ielx7/19/9717300/09826854.pdf?arnumber=9826854
Reference45 articles.
1. Initial fault time estimation of rolling element bearing by backtracking strategy, improved VMD and infogram
2. A Hybrid Prognostics Approach for Estimating Remaining Useful Life of Rolling Element Bearings
3. A summary of fault modelling and predictive health monitoring of rolling element bearings
4. Research on Weak Fault Extraction Method for Alleviating the Mode Mixing of LMD
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An autoregressive model-based degradation trend prognosis considering health indicators with multiscale attention information;Engineering Applications of Artificial Intelligence;2024-05
2. Bearing early fault identification and condition monitoring based on dynamic difference index;Measurement Science and Technology;2024-02-21
3. Nonlinear characterization of enhanced and generalized Hjorth’s feature space for bearing condition monitoring;Measurement Science and Technology;2023-10-25
4. Cyclogram: an effective method for selecting frequency bands for fault diagnosis of rolling element bearings;Measurement Science and Technology;2023-06-07
5. Compound fault diagnosis method for rolling bearings based on the multipoint kurtosis spectrum and AO-MOMDEA;Measurement Science and Technology;2023-06-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3