Safe Deep Reinforcement Learning for Microgrid Energy Management in Distribution Networks With Leveraged Spatial–Temporal Perception
Author:
Affiliation:
1. School of Electrical Engineering, Southeast University, Nanjing, China
2. School of Cyber Science and Engineering, Southeast University, Nanjing, China
3. Department of Electrical and Electronic Engineering, Imperial College London, London, U.K.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Shuangchuang Program of Jiangsu Province
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Computer Science
Link
http://xplorestaging.ieee.org/ielx7/5165411/10226523/10040615.pdf?arnumber=10040615
Reference57 articles.
1. A Review of Deep Reinforcement Learning for Smart Building Energy Management
2. Theory and Applications of Robust Optimization
3. Deep Reinforcement Learning for Strategic Bidding in Electricity Markets
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Two-Step Diffusion Policy Deep Reinforcement Learning Method for Low-Carbon Multi-Energy Microgrid Energy Management;IEEE Transactions on Smart Grid;2024-09
2. Chance Constrained MDP Formulation and Bayesian Advantage Policy Optimization for Stochastic Dynamic Optimal Power Flow;IEEE Transactions on Power Systems;2024-09
3. Revolutionizing photovoltaic consumption and electric vehicle charging: A novel approach for residential distribution systems;IET Generation, Transmission & Distribution;2024-08-08
4. Knowledge-network-embedded deep reinforcement learning: An innovative way to high-efficiently develop an energy management strategy for the integrated energy system with renewable energy sources and multiple energy storage systems;Energy;2024-08
5. Combating Uncertainties in Smart Grid Decision Networks: Multiagent Reinforcement Learning With Imperfect State Information;IEEE Internet of Things Journal;2024-07-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3