Privacy-Preserving and Hierarchically Federated Framework for Short-Term Residential Load Forecasting
Author:
Affiliation:
1. School of Civil Engineering, The University of Sydney, Sydney, Australia
2. College of Control Science and Engineering, Zhejiang University, Hangzhou, China
Funder
Australian Research Council through a Discovery Project Scheme
USYD-ZJU Strategic Partnership Award
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Computer Science
Link
http://xplorestaging.ieee.org/ielx7/5165411/10288469/10122655.pdf?arnumber=10122655
Reference31 articles.
1. Short-term load forecasting based on support vector machines regression;zhang;Proc Int Conf Mach Learn Cybern,2005
2. Short-term load forecasting using a kernel-based support vector regression combination model
3. Day-ahead load forecast using random forest and expert input selection
4. Short-Term Load Forecasting Using Random Forests
5. Overview and performance assessment of the clustering methods for electrical load pattern grouping
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep Reinforcement Learning-Assisted Federated Learning for Robust Short-Term Load Forecasting in Electricity Wholesale Markets;IEEE Transactions on Network Science and Engineering;2024-09
2. Federated Domain Separation for Distributed Forecasting of Non-IID Household Loads;IEEE Transactions on Smart Grid;2024-07
3. Load forecasting based on dynamic adaptive and adversarial graph convolutional networks;Energy and Buildings;2024-06
4. Short‐term electric load forecasting based on empirical wavelet transform and temporal convolutional network;IET Generation, Transmission & Distribution;2024-03-29
5. Short-Term Power Load Forecasting based on Distilled Temporal Convolutional Networks;2024 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops);2024-03-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3