Remaining Useful Life Prediction Method Based on Multisensor Fusion Under Time-Varying Operating Conditions
Author:
Affiliation:
1. SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
2. SINOPEC Tianjin Company, Tianjin, China
3. School of Mechanical Engineering, Xi’an Jiao-tong University, Xi’an, China
Funder
SINOPEC Ministry of Science and Technology Research Project
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Link
http://xplorestaging.ieee.org/ielx7/19/10367905/10474062.pdf?arnumber=10474062
Reference31 articles.
1. Memory Residual Regression Autoencoder for Bearing Fault Detection
2. Multisensor Feature Fusion for Bearing Fault Diagnosis Using Sparse Autoencoder and Deep Belief Network
3. Remaining useful life prediction based on a multi-sensor data fusion model
4. Data fusion techniques for fault diagnosis of industrial machines: A survey;Chaleshtori;Comput. Sci. Eng.,2022
5. A data-level fusion approach for degradation modeling and prognostic analysis under multiple failure modes
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3