Identification of Malaria Disease Using Machine Learning Models

Author:

Kuzhaloli S.1,Thenappan S.2,T Premavathi3,Nivedita V.4,Mageshbabu M.5,Navaneethan S.6

Affiliation:

1. Agni College of Technology,Department of Mechatronics Engineering,Thalambur,India

2. Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology,Department of Electronics and Communication Engineering,Chennai,India

3. Marwadi University,Department of Computer Engineering,Rajkot,India

4. SRM Institute of Science and Technology,Department of Computer Science Engineering,Trichy,India

5. Saveetha School of Engineering,Chennai,India

6. Saveetha Engineering College,Department of Electronics and Communication Engineering,Chennai,India

Publisher

IEEE

Reference17 articles.

1. A Traditional Analysis for Efficient Data Mining with Integrated Association Mining into Regression Techniques

2. Fastai: A Layered API for Deep Learning

3. Implementation and evaluation of personalized intelligent tutoring system;singh;International Journal of Innovative Technology and Exploring Engineering (IJITEE),2019

4. Lightweight Deep Learning for Malaria Parasite Detection Using Cell-Image of Blood Smear Images

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Applying Reinforcement Learning to Optimize Treatment Plans for Chronic Disease Management;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09

2. Soil-Based Crop Recommendation System Using Machine Learning;2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS);2024-04-18

3. Malaria Disease Detection using Convolutional Neural Network Architecture;2024 3rd International Conference for Innovation in Technology (INOCON);2024-03-01

4. Predictive Modeling of Colorectal Tumor Growth and Progression with Machine Learning;2024 International Conference on Integrated Circuits and Communication Systems (ICICACS);2024-02-23

5. An Efficient Learning Assisted Malaria Parasites Identification Methodology based on Blood Smear Images;2023 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES);2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3