Reinforcement Learned Distributed Multi-Robot Navigation With Reciprocal Velocity Obstacle Shaped Rewards
Author:
Affiliation:
1. Department of Computer Science, The University of Hong Kong, Hong Kong
2. Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
Funder
Shenzhen Fundamental Research Program
HKSAR RGC GRF
Innovation and HKSAR Technology Commission
InnoHK Initiative
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Artificial Intelligence,Control and Optimization,Computer Science Applications,Computer Vision and Pattern Recognition,Mechanical Engineering,Human-Computer Interaction,Biomedical Engineering,Control and Systems Engineering
Link
http://xplorestaging.ieee.org/ielx7/7083369/9750005/09740403.pdf?arnumber=9740403
Reference27 articles.
1. Motion Planning Among Dynamic, Decision-Making Agents with Deep Reinforcement Learning
2. Socially aware motion planning with deep reinforcement learning
3. Cooperative Multi-Robot Navigation in Dynamic Environment with Deep Reinforcement Learning
4. Collision Avoidance in Pedestrian-Rich Environments With Deep Reinforcement Learning
5. Robot Navigation in Crowded Environments Using Deep Reinforcement Learning
Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. USV formation navigation decision-making through hybrid deep reinforcement learning using self-attention mechanism;Expert Systems with Applications;2024-12
2. Reciprocal Velocity Obstacle Spatial-Temporal Network for Distributed Multirobot Navigation;IEEE Transactions on Industrial Electronics;2024-11
3. RH-ECBS: enhanced conflict-based search for MRPP with region heuristics;Robotica;2024-08-27
4. Unmanned Aerial Vehicle Obstacle Avoidance Based Custom Elliptic Domain;Drones;2024-08-15
5. Research on formation navigation of USV based on improved A* and DWA fusion algorithm;Journal of Computational Methods in Sciences and Engineering;2024-08-14
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3