Dropout Deep Neural Network Assisted Transfer Learning for Bi-Objective Pareto AGC Dispatch
Author:
Affiliation:
1. Foshan Graduate School of Innovation, Northeastern University, Foshan, China
2. College of Engineering, Shantou University, Shantou, China
3. College of Electric Power, South China University of Technology, Guangzhou, China
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province of China
Fundamental Research Funds for the Central Universities
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology
Link
http://xplorestaging.ieee.org/ielx7/59/10054351/09786663.pdf?arnumber=9786663
Reference43 articles.
1. Virtual generation tribe based robust collaborative consensus algorithm for dynamic generation command dispatch optimization of smart grid
2. Dropout: A simple way to prevent neural networks from overfitting;srivastava;J Mach Learn Res,2014
3. Fast Stackelberg equilibrium learning for real-time coordinated energy control of a multi-area integrated energy system
4. Sample Set Reduction Method Based on Neighborhood Non-Dominated Crowding-Distance Sorting
5. An AGC Dynamics-Constrained Economic Dispatch Model
Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multi-timescale dispatch technology for islanded energy system in the Gobi Desert;Renewable Energy;2024-11
2. Knowledge-shareable adaptive deep dynamic programming for hierarchical generation control of distributed high-percentage renewable energy systems;Renewable Energy;2024-07
3. Smart generation system: A decentralized multi-agent control architecture based on improved consensus algorithm for generation command dispatch of sustainable energy systems;Applied Energy;2024-07
4. Matrix Wasserstein distance generative adversarial network with gradient penalty for fast low-carbon economic dispatch of novel power systems;Energy;2024-07
5. Data driven frequency control of isolated microgrids based on priority experience replay soft deep reinforcement learning algorithm;Energy Reports;2024-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3