Optimum Channel Design of Extremely-Thin-Body nMOSFETs Utilizing Anisotropic Valley—Robust to Surface Roughness Scattering
Author:
Affiliation:
1. Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo, Japan
Funder
Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials
Link
http://xplorestaging.ieee.org/ielx7/16/9741401/09696189.pdf?arnumber=9696189
Reference36 articles.
1. Comparison of Different Scattering Mechanisms in the Ge (111), (110), and (100) Inversion Layers of nMOSFETs With Si nMOSFETs Under High Normal Electric Fields
2. Operation of (111) Ge-on-Insulator n-Channel MOSFET Fabricated by Smart-Cut Technology
3. Impact of asymmetric strain on performance of extremely-thin body (100) GOI and (110) SGOI pMOSFETs;chen;Proc IEEE Symp VLSI Technol,2021
4. A Novel Characterization Scheme of $\hbox{Si/SiO}_{2}$ Interface Roughness for Surface Roughness Scattering-Limited Mobilities of Electrons and Holes in Unstrained- and Strained-Si MOSFETs
5. On the Electron Mobility in Ultrathin SOI and GOI
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Electron Mobility Enhancement of (111)-Oriented Extremely Thin Body Ge-on-Insulator nMOSFETs by Flipped Smart-Cut Substrates;IEEE Transactions on Electron Devices;2024-09
2. Top-Gate Stack Engineering Featuring a High-κ Gadolinium Aluminate Interfacial Layer for Field-Effect Transistors Based on Two-Dimensional Transition-Metal Dichalcogenides;ACS Applied Electronic Materials;2024-05-24
3. Trapped Multimodal Resonance in Magnetic Field Enhancement and Sensitive THz Plasmon Sensor for Toxic Materials Accusation;IEEE Sensors Journal;2023-07-01
4. Interpretation of mobility universality against effective electric field of Si nMOSFETs based on nonlinear model of surface roughness scattering;Applied Physics Express;2023-06-01
5. Low specific contact resistance between InAs/Ni–InAs evaluated by multi-sidewall TLM;AIP Advances;2023-05-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3