An End-to-end Hierarchical Reinforcement Learning Framework for Large-scale Dynamic Flexible Job-shop Scheduling Problem

Author:

Lei Kun1,Guo Peng1,Wang Yi2,Xiong Jianyu1,Zhao Wenchao1

Affiliation:

1. School of Mechanical Engineering, Southwest Jiaotong University,Chengdu,China,610031

2. Auburn University at Montgomery,Department of Mathematics,Montgomery,AL,USA,36124-4023

Funder

National Key Research and Development Plan

Publisher

IEEE

Reference21 articles.

1. Two-stage teaching-learning-based optimization method for flexible job-shop scheduling under machine breakdown

2. Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm

3. Learning to dispatch for job shop scheduling via deep reinforcement learning;zhang;Advances in neural information processing systems,2020

4. Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning

5. A hierarchical reinforcement learning based optimization framework for large-scale dynamic pickup and delivery problems;ma;Advances in neural information processing systems,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3