A Novel Feature Extraction Approach for Mechanical Fault Diagnosis Based on ESAX and BoW Model
Author:
Affiliation:
1. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
2. School of Information, Mechanical and Electrical Engineering, Ningde Normal University, Ningde, China
Funder
National Natural Science Foundation of China
Natural Science Foundation of Fujian Province
Scientific Research and Innovation Team of Ningde Normal University
Special Project of Ningde Normal University
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Instrumentation
Link
http://xplorestaging.ieee.org/ielx7/19/9717300/09805609.pdf?arnumber=9805609
Reference38 articles.
1. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study
2. A novel feature extraction algorithm for bearing fault diagnosis based on enhanced symbolic aggregate approximation
3. Fault severity assessment for rolling element bearings using the Lempel–Ziv complexity and continuous wavelet transform
4. Fault diagnosis of bearing based on Symbolic Aggregate approXimation and Lempel-Ziv
5. A new feature extraction approach using improved symbolic aggregate approximation for machinery intelligent diagnosis
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Dual-module multi-head spatiotemporal joint network with SACGA for wind turbines fault detection;Energy;2024-11
2. Similarity measurement of symbolic sequence based on complexity estimate and dynamic time warping;Nonlinear Dynamics;2024-07-24
3. Subdomain adaptation joint attention network enabled two-stage strategy towards few-shot fault diagnosis of LRE turbopump;Advanced Engineering Informatics;2024-04
4. Gaussian Mixture Variational-Based Transformer Domain Adaptation Fault Diagnosis Method and Its Application in Bearing Fault Diagnosis;IEEE Transactions on Industrial Informatics;2024-01
5. Sum of Gaussian Feature-Based Symbolic Representations of Eddy Current Defect Signatures;Research in Nondestructive Evaluation;2023-06-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3