An Interpretable Deep Transfer Learning-Based Remaining Useful Life Prediction Approach for Bearings With Selective Degradation Knowledge Fusion
Author:
Affiliation:
1. School of Computer and Information Engineering, Henan Normal University, Xinxiang, China
2. Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada
Funder
National Natural Science Foundation of China
Henan Province Technologies Research and Development Project of China
NSFC Development Funding of Henan Normal University
Natural Science and Engineering Research Council of Canada
University Research Grants Program
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Instrumentation
Link
http://xplorestaging.ieee.org/ielx7/19/9717300/09733347.pdf?arnumber=9733347
Reference41 articles.
1. Unsupervised Visual Domain Adaptation Using Subspace Alignment
2. Correcting sample selection bias by unlabeled data;huang;Proc Adv Neural Inf Process Syst,2007
3. Effective hierarchical clustering based on structural similarities in nearest neighbor graphs
4. Detecting Novel Associations in Large Data Sets
5. Derivative Dynamic Time Warping
Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Remaining useful life prediction across operating conditions based on deep subdomain adaptation network considering the weighted multi-source domain;Knowledge-Based Systems;2024-10
2. Adaptive staged remaining useful life prediction of roller in a hot strip mill based on multi-scale LSTM with multi-head attention;Reliability Engineering & System Safety;2024-08
3. Advancing RUL prediction in mechanical systems: A hybrid deep learning approach utilizing non-full lifecycle data;Advanced Engineering Informatics;2024-08
4. Prognostics and health management for predictive maintenance: A review;Journal of Manufacturing Systems;2024-08
5. Interpretable and efficient RUL prediction of turbofan engines using EM-enhanced Bi-LSTM with TCN and attention mechanism;Engineering Research Express;2024-07-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3