A Normal Behavior Model Based on Power Curve and Stacked Regressions for Condition Monitoring of Wind Turbines
Author:
Affiliation:
1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Jiangning, China
2. Department of Wind Energy Research and Development (R&D), Power Factors, Montreal, Canada
Funder
National Natural Science Foundation of China
Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics
China Scholarship Council
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Instrumentation
Link
http://xplorestaging.ieee.org/ielx7/19/9717300/09848829.pdf?arnumber=9848829
Reference43 articles.
1. A study of cross-validation and bootstrap for accuracy estimation and model selection;kohavi;Proc Int Joint Conf Artif Intell (IJCAI),1995
2. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
3. Stacked regressions
4. On-line monitoring of power curves
5. A Reliable Health Indicator for Fault Prognosis of Bearings
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A method for cleaning wind power anomaly data by combining image processing with community detection algorithms;Global Energy Interconnection;2024-06
2. A Normal Behavior Model Based on Machine Learning for Wind Turbine Cyber-Attack Detection;2024 International Workshop on Artificial Intelligence and Machine Learning for Energy Transformation (AIE);2024-05-20
3. Multivariate state estimation-based condition monitoring of slurry circulating pumps for wet flue gas desulfurization of power plants;Engineering Failure Analysis;2024-05
4. Wind Turbine Hybrid Physics-Based Deep Learning Model for a Health Monitoring Approach Considering Provision of Ancillary Services;IEEE Transactions on Instrumentation and Measurement;2024
5. A Multi-View Spatio-Temporal Feature Fusion Approach for Wind Turbine Condition Monitoring Based on SCADA Data;IEEE Access;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3