Multi-Agent Actor-Critic Multitask Reinforcement Learning based on GTD(1) with Consensus

Author:

Stankovic Milos S.1,Beko Marko2,Ilic Nemanja3,Stankovic Srdjan S.4

Affiliation:

1. University Singidunum,Belgrade,Serbia

2. Universidade de Lisboa,Instituto de Telecomunicações, Instituto Superior Técnico,Lisbon,Portugal

3. College of Applied Technical Sciences,Kruševac,Serbia

4. University of Belgrade,School of Electrical Engineering,Serbia

Funder

Science Fund of the Republic of Serbia

Publisher

IEEE

Reference36 articles.

1. A decentralized policy gradient approach to multi-task reinforcement learning;zeng;Proceedings of Conferences on Uncertainty in Artificial Intelligence,2021

2. Stochastic Approximation and Recursive Estimation

3. Primal-Dual Algorithm for Distributed Reinforcement Learning: Distributed GTD

4. A multi-agent off-policy actor-critic algorithm for distributed reinforcement learning;suttle,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3