Machine Learning Based Techniques for Fault Detection in Power Distribution Grid: A Review

Author:

Ibitoye Oladapo Tolulope1,Onibonoje Moses Oluwafemi1,Dada Joseph Olufemi1

Affiliation:

1. Afe Babalola University,Department of Electrical/Electronics and Computer Engineering,Ado Ekiti,Nigeria

Publisher

IEEE

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Early Fault Detection in Distribution Networks Based on Wavelet Packets and Anomaly Transformer;2024 36th Chinese Control and Decision Conference (CCDC);2024-05-25

2. Collaborative Multi-Teacher Distillation for Multi-Task Fault Detection in Power Distribution Grid;2024 27th International Conference on Computer Supported Cooperative Work in Design (CSCWD);2024-05-08

3. Machine Learning-Based Multiclass Anomaly Detection and Classification in Hybrid Active Distribution Networks;IEEE Access;2024

4. Analysis of Power Quality and Technical Challenges in Grid-Tied Renewable Energy;WSEAS TRANSACTIONS ON POWER SYSTEMS;2023-11-20

5. A Utility Use Case: Utilizing Spatiotemporal Data Analytics to Pinpoint Outage Location;2023 IEEE Power & Energy Society General Meeting (PESGM);2023-07-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3