Wasserstein GAN-Based Digital Twin-Inspired Model for Early Drift Fault Detection in Wireless Sensor Networks
Author:
Affiliation:
1. Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, South Korea
2. School of Computing, Engineering and Built Environment, Edinburgh Napier University, Edinburgh, U.K
Funder
2023 Research Fund of the University of Ulsan
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Instrumentation
Link
http://xplorestaging.ieee.org/ielx7/7361/10152544/10122519.pdf?arnumber=10122519
Reference56 articles.
1. Improved histogram-based anomaly detector with the extended principal component features;aryal;arXiv 1909 12702,2019
2. Low-Cost IoT-Based Sensor System: A Case Study on Harsh Environmental Monitoring
3. A new distributed architecture for evaluating AI-based security systems at the edge: Network TON_IoT datasets
4. Fault diagnosis for sensors in a class of nonlinear systems;guo;IMA J Math Control Inf,2018
5. Fault detection, diagnosis and recovery using Artificial Immune Systems: A review
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Generative artificial intelligence and data augmentation for prognostic and health management: Taxonomy, progress, and prospects;Expert Systems with Applications;2024-12
2. Sensor Fault Detection and Classification Using Multi-Step-Ahead Prediction with an Long Short-Term Memoery (LSTM) Autoencoder;Applied Sciences;2024-09-01
3. Digital Twin-Assisted Multiview Reconstruction Enhanced Domain Adaptation Graph Networks for Aero-Engine Gas Path Fault Diagnosis;IEEE Sensors Journal;2024-07-01
4. Effective Hybrid Deep Learning Model of GAN and LSTM for Clustering and Data Aggregation in Wireless Sensor Networks;International Journal of Sensors, Wireless Communications and Control;2024-06
5. Chaos quantum optimization‐based layered diagnosis framework for faulty sensor node diagnosis and classification in wireless sensor networks;International Journal of Communication Systems;2024-04-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3