Remaining Useful Life Prediction of Turbofan Engines Using CNN-LSTM-SAM Approach
Author:
Affiliation:
1. Internet of Vehicle to Road Research Laboratory, Chang’an University, Xi’an, China
2. School of Electronics and Control Engineering, Chang’an University, Xi’an, China
Funder
Science and Technology Planning Project of the State Administration of Market Supervision and Administration
Key Research and Development Program of Shaanxi Province
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Instrumentation
Link
http://xplorestaging.ieee.org/ielx7/7361/10113769/10089402.pdf?arnumber=10089402
Reference39 articles.
1. Remaining useful life prediction of bearings under different working conditions using a deep feature disentanglement based transfer learning method
2. Semi-Supervised Deep Learning Using Pseudo Labels for Hyperspectral Image Classification
3. A deep learning method for lithium-ion battery remaining useful life prediction based on sparse segment data via cloud computing system
4. Multistream sensor fusion-based prognostics model for systems with single failure modes
5. Data-driven remaining useful life prediction via multiple sensor signals and deep long short-term memory neural network;saxena;Proc Int Conf Prognostics Health Manage,2008
Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Method for Remaining Useful Life Prediction of Turbofan Engines Combining Adam Optimization-Based Self-Attention Mechanism with Temporal Convolutional Networks;Applied Sciences;2024-09-02
2. Deep residual ensemble model for predicting remaining useful life of turbo fan engines;International Journal of Turbo & Jet-Engines;2024-08-27
3. Advanced RUL Estimation for Lithium-Ion Batteries: Integrating Attention-Based LSTM with Mutual Learning-enhanced Artificial Bee Colony Optimization;Journal of The Institution of Engineers (India): Series B;2024-08-04
4. Prediction of the temperature of diesel engine oil in railroad locomotives using compressed information-based data fusion method with attention-enhanced CNN-LSTM;Applied Energy;2024-08
5. Remaining useful life prediction under variable operating conditions via multisource adversarial domain adaptation networks;Applied Soft Computing;2024-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3