Enhancing Short-Term Power Load Forecasting for Industrial and Commercial Buildings: A Hybrid Approach Using TimeGAN, CNN, and LSTM
Author:
Affiliation:
1. School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
Funder
National Natural Science Foundation of China
Beijing Nova Program
National Key Laboratory of Operation and Control of New Power Systems of Tsinghua University
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Systems Engineering
Link
http://xplorestaging.ieee.org/ielx7/8782706/10007667/10262292.pdf?arnumber=10262292
Reference39 articles.
1. Loss Minimization and Optimal Power flow for long term and short-term Real-Time Forecasting System using Cuckoo Search Algorithm
2. A CNN–LSTM model for gold price time-series forecasting
3. A novel hybrid prediction model for aggregated loads of buildings by considering the electric vehicles
4. ImageNet: Classification with deep convolutional neural networks;krizhevsky;Proc 26th Annu Conf Neural Inf Process Syst,2012
5. Hybrid techniques for short term load forecasting;panda;Majlesi J Elect Eng,2023
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Prophet–CEEMDAN–ARBiLSTM-Based Model for Short-Term Load Forecasting;Future Internet;2024-05-31
2. Comparison of Data Partitioning Method using LSTM for Power Demand at a Clinic;2024 12th International Conference on Smart Grid (icSmartGrid);2024-05-27
3. A Comprehensive Review of Behind-the-Meter Distributed Energy Resources Load Forecasting: Models, Challenges, and Emerging Technologies;Energies;2024-05-24
4. Explainable Artificial Intelligence for Crowd Forecasting Using Global Ensemble Echo State Networks;IEEE Open Journal of the Industrial Electronics Society;2024
5. Building energy consumption prediction method based on Bayesian regression and thermal inertia correction;International Journal of Renewable Energy Development;2023-11-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3