Intelligent Fault Diagnosis of Manufacturing Processes Using Extra Tree Classification Algorithm and Feature Selection Strategies
Author:
Affiliation:
1. Department of Mechanical and Industrial Engineering, Faculty of Engineering, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Systems Engineering
Link
http://xplorestaging.ieee.org/ielx7/8782706/10007667/10323174.pdf?arnumber=10323174
Reference68 articles.
1. Highly Accurate Machine Fault Diagnosis Using Deep Transfer Learning
2. Machine Fault Diagnosis and Prognosis: The State of The Art
3. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis
4. Fault diagnosis in spur gears based on genetic algorithm and random forest
5. XGBoost Classifier for Fault Identification in Low Voltage Neutral Point Ungrounded System
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Three‐layer deep learning network random trees for fault detection in chemical production process;The Canadian Journal of Chemical Engineering;2024-08-19
2. Predictive Maintenance and Real Time Monitoring using IoT and Cloud Computing;2024 5th International Conference on Image Processing and Capsule Networks (ICIPCN);2024-07-03
3. Intelligent support in manufacturing process selection based on artificial neural networks, fuzzy logic, and genetic algorithms: Current state and future perspectives;Computers & Industrial Engineering;2024-07
4. Adversarial Attacks and Defenses in Fault Detection and Diagnosis: A Comprehensive Benchmark on the Tennessee Eastman Process;IEEE Open Journal of the Industrial Electronics Society;2024
5. Performance and Adaptability Testing of Machine Learning Models for Power Transmission Network Fault Diagnosis With Renewable Energy Sources Integration;IEEE Access;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3