A Simplified Dc-Bias Injection Method with Mirror Transformer for Magnetic Material Characterization
Author:
Affiliation:
1. Princeton University,Princeton,NJ,United States
2. Dartmouth College,Hanover,NH,United States
3. Ekarus Engines GmbH,Germany
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/10131044/10130846/10131133.pdf?arnumber=10131133
Reference19 articles.
1. Triple pulse test (TPT) for char-acterizing power loss in magnetic components in analogous to double pulse test (DPT) for power electronics devices;wang;Annual Conference of the IEEE Industrial Electronics Society,0
2. GaN-Half-Bridge for Core Loss Measurements Under Rectangular AC Voltage and DC Bias of the Magnetic Flux Density
3. Experimental evaluation of the influence of DC-premagnetization on the properties of power electronic ferrites
4. Test Setup for Characterisation of Biased Magnetic Hysteresis Loops in Power Electronic Applications
5. Novel fit formula for the calculation of hysteresis losses including dc-premagnetization;stenglein;International Exhibition and Conference for Power Electronics Intelligent Motion Renewable Energy and Energy Management,0
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Simplified DC-Bias Injection Method for Characterizing Power Magnetics Using a Voltage Mirror Transformer;IEEE Transactions on Power Electronics;2024-06
2. Improved Direct-Coupled High-Bandwidth Voltage Amplifier for B-H Characterization of Magnetic Materials;IEEE Transactions on Industry Applications;2024-05
3. A Multilevel Converter Testbench for High-Frequency Power Magnetics Characterization;2024 IEEE Applied Power Electronics Conference and Exposition (APEC);2024-02-25
4. Investigating the Mutual Impact of Waveform, Temperature, and Dc-Bias on Magnetic Core Loss using Neural Network Models;2024 IEEE Applied Power Electronics Conference and Exposition (APEC);2024-02-25
5. Multi-Material Power Magnetics Modeling with a Modular and Scalable Machine Learning Framework;2024 IEEE Applied Power Electronics Conference and Exposition (APEC);2024-02-25
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3