Load Forecasting Considering Demand Response Mechanism
Author:
Affiliation:
1. China Electric Power Research Institute,Artificial Intelligence Application Research Department,Beijing,China
2. Research Institute of SGCC,Tianjin Power Economic,Tianjin,China
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/10140170/10140192/10140881.pdf?arnumber=10140881
Reference22 articles.
1. RBF-NN short-term load forecasting model considering integrated demand response influencing factors[J];zhisheng;Chinese Journal of Electrical Engineering,2018
2. From controllable loads to generalized demand-side resources: a review on developments of demand-side resources[J];b;Renewable and Sustainable Energy Reviews,2016
3. Research on Elman-NN short-term load forecasting model with demand response [J];daolin;IEE New Power Electronic Techniques,2017
4. Short-term load forecasting for power systems accounting for demand response and deep structural multi-task learning [J];ma;Electrical measurement and Instrumentation,2019
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhancing Demand Response Forecasting Through Random Forest Regression: A Case Study Analysis;2024 6th International Conference on Energy, Power and Environment (ICEPE);2024-06-20
2. Toward Smarter Grids: Experimental Investigation of an “All-Optical” Electrical Sensor Under Laboratory Conditions;IEEE Access;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3