Fed-HANet: Federated Visual Grasping Learning for Human Robot Handovers
Author:
Affiliation:
1. National Yang Ming Chiao Tung University (NYCU), Hsinchu, Taiwan
2. Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
3. Department of Computer Science, George Mason University, Fairfax, VA, USA
Funder
Taiwan's National Science and Technology Council
Taiwan University Research Collaboration Project
National Yang Ming Chiao Tung University and Ministry of Education
Higher Education Sprout Project
National Science Foundation
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Artificial Intelligence,Control and Optimization,Computer Science Applications,Computer Vision and Pattern Recognition,Mechanical Engineering,Human-Computer Interaction,Biomedical Engineering,Control and Systems Engineering
Link
https://ieeexplore.ieee.org/ielam/7083369/10102643/10109097-aam.pdf
Reference32 articles.
1. Robotic pick-and-place of novel objects in clutter with multi-affordance grasping and cross-domain image matching;zeng;Int J Robot Res,2019
2. Learning ambidextrous robot grasping policies
3. 6-DOF GraspNet: Variational Grasp Generation for Object Manipulation
4. Supersizing self-supervision: Learning to grasp from 50K tries and 700 robot hours
5. Deep object pose estimation for semantic robotic grasping of household objects;tremblay;Proc Conf Robot Learn,0
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A comprehensive review of robot intelligent grasping based on tactile perception;Robotics and Computer-Integrated Manufacturing;2024-12
2. Human–robot object handover: Recent progress and future direction;Biomimetic Intelligence and Robotics;2024-03
3. Multimodal Learning‐Based Proactive Human Handover Intention Prediction Using Wearable Data Gloves and Augmented Reality;Advanced Intelligent Systems;2024-01-09
4. Privacy-Preserving Federated Class-Incremental Learning;IEEE Transactions on Machine Learning in Communications and Networking;2024
5. Make Federated Learning a Standard in Robotics by Using ROS2;Proceedings of the IEEE/ACM 10th International Conference on Big Data Computing, Applications and Technologies;2023-12-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3