Communication Efficient Federated Learning With Heterogeneous Structured Client Models

Author:

Hu Yao1ORCID,Sun Xiaoyan2ORCID,Tian Ye3ORCID,Song Linqi1ORCID,Tan Kay Chen4ORCID

Affiliation:

1. Department of Computer Science, City University of Hong Kong, Hong Kong SAR

2. School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China

3. Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China

4. Department of Computing, The Hong Kong Polytechnic University, Hong Kong SAR

Funder

National Natural Science Foundation of China

Research Grants Council of the Hong Kong, SAR

Changsha Science and Technology Program International and Regional Science and Technology Cooperation Project

Technological Breakthrough Project of Science, Technology and Innovation Commission of Shenzhen Municipality

InnoHK Initiative

Government of the HKSAR

Laboratory for AI-Powered Financial Technologies

Hong Kong UGC Special Virtual Teaching and Learning

Hong Kong UGC RMGS

Tencent AI Lab Rhino-Bird Gift Fund

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Artificial Intelligence,Computational Mathematics,Control and Optimization,Computer Science Applications

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Personalized Federated Learning with Enhanced Implicit Generalization;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

2. Heterogeneous Structured Federated Learning with Graph Convolutional Aggregation for MRI-Based Mental Disorder Diagnosis;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

3. Lightweight Privacy-Preserving Cross-Cluster Federated Learning With Heterogeneous Data;IEEE Transactions on Information Forensics and Security;2024

4. Evolutionary Neural Architecture Search for Transferable Networks;IEEE Transactions on Emerging Topics in Computational Intelligence;2024

5. Limitations and Future Aspects of Communication Costs in Federated Learning: A Survey;Sensors;2023-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3