Temporal-Domain Adaptation for Satellite Image Time-Series Land-Cover Mapping With Adversarial Learning and Spatially Aware Self-Training
Author:
Affiliation:
1. INRAE, UMR TETIS, University of Montpellier, Montpellier, France
2. CIRAD, UMR TETIS, University of Montpellier, Montpellier, France
3. Airbus Defence and Space, Toulouse, France
Funder
Convention Industrielle de Formation par la REcherche
French National Association of Research and Technology
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Atmospheric Science,Computers in Earth Sciences
Link
http://xplorestaging.ieee.org/ielx7/4609443/9973430/10089508.pdf?arnumber=10089508
Reference64 articles.
1. A Review of Domain Adaptation without Target Labels
2. Spatial dependence between training and test sets: another pitfall of classification accuracy assessment in remote sensing
3. A Survey of Unsupervised Deep Domain Adaptation
4. Deep Learning and Earth Observation to Support the Sustainable Development Goals: Current approaches, open challenges, and future opportunities
5. Spectral–Spatial Weighted Kernel Manifold Embedded Distribution Alignment for Remote Sensing Image Classification
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A source-free unsupervised domain adaptation method for cross-regional and cross-time crop mapping from satellite image time series;Remote Sensing of Environment;2024-12
2. DIAMANTE: A data-centric semantic segmentation approach to map tree dieback induced by bark beetle infestations via satellite images;Journal of Intelligent Information Systems;2024-09-04
3. FieldSeg-DA2.0: Further enhancing the spatiotemporal transferability of an individual arable field (IAF) extraction network using multisource remote sensing and land cover data;Computers and Electronics in Agriculture;2024-07
4. Temporally transferable crop mapping with temporal encoding and deep learning augmentations;International Journal of Applied Earth Observation and Geoinformation;2024-05
5. Boosting crop classification by hierarchically fusing satellite, rotational, and contextual data;Remote Sensing of Environment;2024-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3