A Novel Technique Based on Deep Learning and a Synthetic Target Database for Classification of Urban Areas in PolSAR Data

Author:

De ShaunakORCID,Bruzzone LorenzoORCID,Bhattacharya AvikORCID,Bovolo FrancescaORCID,Chaudhuri Subhasis

Funder

Italian Ministries MAECI/MIUR

Advanced Research (ITPAR), Phase III

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Atmospheric Science,Computers in Earth Sciences

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CNNs for remote extraction of urban features: A survey-driven benchmarking;Expert Systems with Applications;2024-12

2. DNN-PolSAR: Urban Image Segmentation and Classification using Polarimetric SAR based on DNNs;International Journal of Inventive Engineering and Sciences;2024-05-30

3. Data-driven polarimetric imaging: a review;Opto-Electronic Science;2024

4. Light image enhancement based on embedded image system application in animated character images;Optical and Quantum Electronics;2023-12-14

5. Polsar Image Classification Based on 3D Generative Adversarial Networks;2023 IEEE India Geoscience and Remote Sensing Symposium (InGARSS);2023-12-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3