S&GDA: An Unsupervised Domain Adaptive Semantic Segmentation Framework Considering Both Imaging Scene and Geometric Domain Shifts

Author:

Chen Hui1ORCID,Cheng Liang1ORCID,Li Ning1,Yao Yunchang1,Cheng Jian1,Zhang Ka2ORCID

Affiliation:

1. Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of the Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Jiangsu, Nanjing, China

2. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu, Nanjing, China

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

General Earth and Planetary Sciences,Electrical and Electronic Engineering

Reference61 articles.

1. ST++: Make Self-trainingWork Better for Semi-supervised Semantic Segmentation

2. LoveDA: A remote sensing land-cover dataset for domain adaptive semantic segmentation;wang;arXiv 2110 08733,2021

3. FSPN: End-to-end full-space pooling weakly supervised network for benthic habitat mapping using remote sensing images;chen;Int J Appl Earth Observ Geoinf,2023

4. FDA: Fourier Domain Adaptation for Semantic Segmentation

5. Towards Fewer Annotations: Active Learning via Region Impurity and Prediction Uncertainty for Domain Adaptive Semantic Segmentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Source-Free Online Domain Adaptive Semantic Segmentation of Satellite Images Under Image Degradation;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

2. DA&MTSS: An End-to-End Remote Sensing Image Domain Adaptive Semantic Segmentation Framework Combining Data Augmentation and Mobile Threshold Self-Supervision;IEEE Transactions on Geoscience and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3