Open Set Recognition With Incremental Learning for SAR Target Classification
Author:
Affiliation:
1. State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, College of Electronic Science, National University of Defense Technology, Changsha, China
Funder
National Natural Science Foundation of China
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Earth and Planetary Sciences,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/36/10006360/10144795.pdf?arnumber=10144795
Reference54 articles.
1. An Open Set Recognition Method for SAR Targets Based on Multitask Learning
2. Open Set SAR Target Recognition Using Class Boundary Extracting
3. Analyzing the Separability of SAR Classification Dataset in Open Set Conditions
4. Feature learning for SAR target recognition with unknown classes by using CVAE-GAN;hu;Remote Sens,2021
5. CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. SAR vehicle image generation with integrated deep imaging geometric information;International Journal of Applied Earth Observation and Geoinformation;2024-08
2. Threshold-Free Open-Set Learning Network for SAR Automatic Target Recognition;IEEE Sensors Journal;2024-03-01
3. Class-Incremental Novel Category Discovery in Remote Sensing Image Scene Classification via Contrastive Learning;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024
4. Open Set Recognition and Category Discovery Framework for SAR Target Classification Based on K-Contrast Loss and Deep Clustering;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024
5. Novel Category Discovery Without Forgetting for Automatic Target Recognition;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3