MFGNet: Multibranch Feature Generation Networks for Few-Shot Remote Sensing Scene Classification
Author:
Affiliation:
1. Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, International Research Center for Intelligent Perception and Computation, Xidian University, Xi’an, China
Funder
National Natural Science Foundation of China
Key Research and Development Program in the Shaanxi Province of China
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Earth and Planetary Sciences,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/36/10006360/10140138.pdf?arnumber=10140138
Reference63 articles.
1. AttentionBased Deep Feature Fusion for the Scene Classification of HighResolution Remote Sensing Images
2. Semantic Attention and Scale Complementary Network for Instance Segmentation in Remote Sensing Images
3. A Novel Deep Feature Fusion Network For Remote Sensing Scene Classification
4. Distilling the knowledge in a neural network;hinton;ArXiv 1503 02531,2015
5. Deep learning in remote sensing applications: A meta-analysis and review
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Collaborative Self-Supervised Evolution for Few-Shot Remote Sensing Scene Classification;IEEE Transactions on Geoscience and Remote Sensing;2024
2. Accelerated Feature Extraction and Refinement for Improved Aerial Scene Categorization;IEEE Transactions on Geoscience and Remote Sensing;2024
3. Cycle-Refined Multidecision Joint Alignment Network for Unsupervised Domain Adaptive Hyperspectral Change Detection;IEEE Transactions on Neural Networks and Learning Systems;2024
4. VAE-based Multi-domain Feature Alignment and Generative Network for Few-Shot Radar Models Identification;2023 3rd International Conference on Intelligent Power and Systems (ICIPS);2023-10-20
5. Multi-Prior Graph Autoencoder with Ranking-Based Band Selection for Hyperspectral Anomaly Detection;Remote Sensing;2023-09-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3