Remote Sensing Image Scene Classification Using Multiscale Feature Fusion Covariance Network With Octave Convolution
Author:
Affiliation:
1. School of Electronics and Control Engineering, Chang’an University, Xi’an, China
2. School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, Australia
Funder
Key Research and Development Program of Shaanxi Province
Xi’an Science & Technology Project
National Key Research and Development Program of China
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Earth and Planetary Sciences,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/36/9633014/09737532.pdf?arnumber=9737532
Reference67 articles.
1. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?
2. Remote Sensing Image Scene Classification Using Rearranged Local Features
3. Improved Bilinear Pooling with CNNs
4. Matrix Backpropagation for Deep Networks with Structured Layers
5. Invariant Deep Compressible Covariance Pooling for Aerial Scene Categorization
Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Lightweight remote sensing scene classification based on knowledge distillation;J INFRARED MILLIM W;2024
2. DMF2Net: Dynamic multi-level feature fusion network for heterogeneous remote sensing image change detection;Knowledge-Based Systems;2024-09
3. Mfpenet: multistage foreground-perception enhancement network for remote-sensing scene classification;The Visual Computer;2024-08-13
4. SCECNet: self-correction feature enhancement fusion network for remote sensing scene classification;Earth Science Informatics;2024-07-13
5. Efficient knowledge distillation for hybrid models: A vision transformer‐convolutional neural network to convolutional neural network approach for classifying remote sensing images;IET Cyber-Systems and Robotics;2024-07-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3