Fast Orthogonal Projection for Hyperspectral Unmixing
Author:
Affiliation:
1. Department of Technology of Computers and Communications, Hyperspectral Computing Laboratory, University of Extremadura, Cáceres, Spain
2. College of Information and Control Engineering, China University of Petroleum (East China), Qingdao, China
Funder
Consejeria de Economia, Ciencia y Agencia Digital de la Junta de Extremadura and Fondo Europeo de Desarrollo Regional de la Union Eropea
Spanish Ministerio de Ciencia e Innovacion
European Union’s Horizon 2020 Research and Innovation Program
2021 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Earth and Planetary Sciences,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/36/9633014/09707781.pdf?arnumber=9707781
Reference40 articles.
1. Endmember Extraction From Highly Mixed Data Using Minimum Volume Constrained Nonnegative Matrix Factorization
2. Minimum distance constrained non-negative matrix factorization for the endmember extraction of hyperspectral images;yu;Proc SPIE,2007
3. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
4. Supervised Nonlinear Spectral Unmixing Using a Postnonlinear Mixing Model for Hyperspectral Imagery
5. Blind Hyperspectral Unmixing Using an Extended Linear Mixing Model to Address Spectral Variability
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Robust hyperspectral unmixing using weighted group sparsity and minimum volume regularization;International Journal of Remote Sensing;2024-07-02
2. An Abundance-Guided Attention Network for Hyperspectral Unmixing;IEEE Transactions on Geoscience and Remote Sensing;2024
3. Analysis of Hyperspectral Data to Develop an Approach for Document Images;Sensors;2023-08-01
4. Local spatial similarity based joint-sparse regression for hyperspectral image unmixing;Optik;2023-07
5. Spatial Validation of Spectral Unmixing Results: A Systematic Review;Remote Sensing;2023-05-29
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3