Explainable Deep Learning for Supervised Seismic Facies Classification Using Intrinsic Method

Author:

Noh Kyubo1ORCID,Kim Dowan1ORCID,Byun Joongmoo1ORCID

Affiliation:

1. Reservoir Imaging with Seismic and Electromagnetic Technology Using Machine Learning (RISE.ML), Hanyang University, Seoul, South Korea

Funder

Korea Institute of Energy Technology Evaluation and Planning (KETEP), Ministry of Trade, Industry and Energy (MOTIE) of the Republic of Korea

National Research Foundation of Korea (NRF) through the Korea Government

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

General Earth and Planetary Sciences,Electrical and Electronic Engineering

Reference41 articles.

1. Selection of Augmented Data for Overcoming the Imbalance Problem in Facies Classification

2. Gradient-based learning applied to document recognition

3. The Bayesian case model: A generative approach for case-based reasoning and prototype classification;kim;Proc Adv Neural Inf Process Syst,2014

4. Prototype selection for interpretable classification

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning in Geophysics: Current Status, Challenges, and Future Directions;Journal of the Korean Society of Mineral and Energy Resources Engineers;2024-02-28

2. Explainable artificial intelligence‐driven mask design for self‐supervised seismic denoising;Geophysical Prospecting;2024-01-27

3. Optimizing Seismic Facies Classification Through Differentiable Network Architecture Search;IEEE Transactions on Geoscience and Remote Sensing;2024

4. Bridging element-free Galerkin and pluri-Gaussian simulation for geological uncertainty estimation in an ensemble smoother data assimilation framework;Petroleum Science;2023-12

5. Interpretability Vs Explainability: The Black Box of Machine Learning;2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE);2023-02-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3