Spatio–Temporal–Spectral Collaborative Learning for Spatio–Temporal Fusion with Land Cover Changes
Author:
Affiliation:
1. Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, China
2. College of Electrical and Information Engineering, Hunan University, Changsha, China
Funder
National Natural Science Foundation of China
Zhejiang Provincial Natural Science Foundation of China
Postdoctoral Research Foundation of China
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Earth and Planetary Sciences,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/36/9633014/09803281.pdf?arnumber=9803281
Reference50 articles.
1. TEMDnet: A Novel Deep Denoising Network for Transient Electromagnetic Signal With Signal-to-Image Transformation
2. Spatiotemporal Fusion of Land Surface Temperature Based on a Convolutional Neural Network
3. Image Super-Resolution Using Deep Convolutional Networks
4. Spatiotemporal Satellite Image Fusion Using Deep Convolutional Neural Networks
5. Operational Data Fusion Framework for Building Frequent Landsat-Like Imagery
Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Generating high-resolution hyperspectral time series datasets based on unsupervised spatial-temporal-spectral fusion network incorporating a deep prior;Information Fusion;2024-11
2. Adjustment of Sentinel-3 Spectral Bands With Sentinel-2 to Enhance the Quality of Spatio-Temporally Fused Images;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024
3. A Novel Remote Sensing Spatiotemporal Data Fusion Framework Based on the Combination of Deep-Learning Downscaling and Traditional Fusion Algorithm;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024
4. A Dual-Perspective Spatiotemporal Fusion Model for Remote Sensing Images by Discriminative Learning of the Spatial and Temporal Mapping;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024
5. CIG-STF: Change Information Guided Spatiotemporal Fusion for Remote Sensing Images;IEEE Transactions on Geoscience and Remote Sensing;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3