A Multilevel-Guided Curriculum Domain Adaptation Approach to Semantic Segmentation for High-Resolution Remote Sensing Images
Author:
Affiliation:
1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
2. Engineering Quality Supervision Center, Logistics Support Department, Military Commission, Beijing, China
Funder
National Key Research and Development Program of China
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Earth and Planetary Sciences,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/36/10006360/10138603.pdf?arnumber=10138603
Reference69 articles.
1. An End-to-End Network for Remote Sensing Imagery Semantic Segmentation via Joint Pixel- and Representation-Level Domain Adaptation
2. Epidemiology of rheumatic fever in the developing world
3. A Stepwise Domain Adaptive Segmentation Network With Covariate Shift Alleviation for Remote Sensing Imagery
4. Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation
5. Domain Adaptation for Remote Sensing Image Semantic Segmentation: An Integrated Approach of Contrastive Learning and Adversarial Learning
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. EH-former: Regional easy-hard-aware transformer for breast lesion segmentation in ultrasound images;Information Fusion;2024-09
2. Unsupervised domain adaptation for the semantic segmentation of remote sensing images via a class-aware Fourier transform and a fine-grained discriminator;Digital Signal Processing;2024-08
3. Learn From Segment Anything Model: Local Region Homogenizing for Cross-Domain Remote Sensing Image Segmentation;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07
4. An In-Depth Analysis of Domain Adaptation in Computer and Robotic Vision;Applied Sciences;2023-11-29
5. Learning to Adapt Adversarial Perturbation Consistency for Domain Adaptive Semantic Segmentation of Remote Sensing Images;Remote Sensing;2023-11-25
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3