Weakly Supervised Learning for Textbook Question Answering

Author:

Ma Jie1ORCID,Chai Qi2,Huang Jingyue3ORCID,Liu Jun1ORCID,You Yang3ORCID,Zheng Qinghua2

Affiliation:

1. National Engineering Laboratory for Big Data Analytics, School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China

2. Shaanxi Province Key Laboratory of Satellite and Terrestrial Network Technology Research and Development, School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China

3. Department of Computer Science, High Performance Computing for Artificial Intelligence Laboratory, National University of Singapore, Queenstown, Singapore

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Innovative Research Group of the National Natural Science Foundation of China

Innovation Research Team of Ministry of Education

Consulting Research Project of Chinese Academy of Engineering “The Online and Offline Mixed Educational Service System for “The Belt and Road” Training in MOOC China;”

“Lenovo-Xi’an Jiaotong University (XJTU)” Intelligent Industry Joint Laboratory Project

China Postdoctoral Science Foundation

Project of China Knowledge Centre for Engineering Science and Technology

China Scholarship Council

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference48 articles.

1. Deep Residual Learning for Image Recognition

2. Multitask Learning for Visual Question Answering

3. Dynamic visual reasoning by learning differentiable physics models from video and language;ding;Proc Adv Neural Inf Process Syst,2021

4. The neuro-symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision;mao;Proc 7th Int Conf Learn Represent,2019

5. Neural-symbolic VQA: Disentangling reasoning from vision and language understanding;yi;Proc Adv Neural Inf Process Syst,2018

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3