A Novel Self-Supervised Learning-Based Anomalous Node Detection Method Based on an Autoencoder for Wireless Sensor Networks
Author:
Affiliation:
1. School of Information and Communication, Guilin University of Electronic Technology, Guilin, China
2. Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian University of Technology, Fuzhou, China
Funder
National Natural Science Foundation of China
Innovation Project of Guangxi Graduate Education
Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing
Ministry of Education Key Laboratory of Cognitive Radio and Information Processing
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Link
http://xplorestaging.ieee.org/ielx7/4267003/10473604/10410217.pdf?arnumber=10410217
Reference40 articles.
1. Survey on the Characterization and Classification of Wireless Sensor Network Applications
2. Application of Wireless Sensor Network in Water Quality Monitoring
3. Review—Machine Learning Techniques in Wireless Sensor Network Based Precision Agriculture
4. Emerging Wireless Sensor Networks and Internet of Things Technologies—Foundations of Smart Healthcare
5. Contextual outlier detection for wireless sensor networks
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimizing Data Transmission in Large-Scale Sensor Networks Using UAVs: A Segmentation-Clustering and Sequential Approach;IEEE Sensors Journal;2024-08-15
2. Decoding Abnormal Heart Patterns: ECG Anomaly Detection Using MobileNet50 CNN Autoencoder Method;2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS);2024-06-28
3. Interpreting Deviant Heart Patterns: Applying MobileNet CNN Autoencoder for ECG Anomaly Detection;2024 International Conference on Smart Systems for applications in Electrical Sciences (ICSSES);2024-05-03
4. DroneSSL: Self-Supervised Multimodal Anomaly Detection in Internet of Drone Things;IEEE Transactions on Consumer Electronics;2024-02
5. Security and privacy concerns in social networks mathematically modified metaheuristic-based approach;Journal of Discrete Mathematical Sciences and Cryptography;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3