Few-Shot Cross-Domain Fault Diagnosis of Bearing Driven by Task-Supervised ANIL
Author:
Affiliation:
1. College of Mechanical and Vehicle Engineering, Hunan University, Changsha, China
2. Department of Management Science, University of Strathclyde, Glasgow, U.K.
Funder
National Natural Science Foundation of China
Science and Technology Innovation Program of Hunan Province
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Link
http://xplorestaging.ieee.org/ielx7/6488907/10570342/10418185.pdf?arnumber=10418185
Reference33 articles.
1. Cross-domain intelligent bearing fault diagnosis under class imbalanced samples via transfer residual network augmented with explicit weight self-assignment strategy based on meta data
2. Edge Computing on IoT for Machine Signal Processing and Fault Diagnosis: A Review
3. Optimization of Edge-PLC-Based Fault Diagnosis With Random Forest in Industrial Internet of Things
4. Fast and Accurate Deep Learning Framework for Secure Fault Diagnosis in the Industrial Internet of Things
5. Fault diagnosis method of planetary gearbox based on empirical mode decomposition and deep convolutional neural network;Niaoqing;J. Mech. Eng. (In Chinese),2019
Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Classifier-guided neural blind deconvolution: A physics-informed denoising module for bearing fault diagnosis under noisy conditions;Mechanical Systems and Signal Processing;2025-01
2. DPICEN: Deep physical information consistency embedded network for bearing fault diagnosis under unknown domain;Reliability Engineering & System Safety;2024-12
3. Semi-supervised source-free domain adaptation method via diffusive label propagation for rotating machinery fault diagnosis;Reliability Engineering & System Safety;2024-12
4. Compact convolutional transformers- generative adversarial network for compound fault diagnosis of industrial robot;Engineering Applications of Artificial Intelligence;2024-12
5. An interpretable multiscale lifting wavelet contrast network for planetary gearbox fault diagnosis with small samples;Reliability Engineering & System Safety;2024-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3