Achieving Efficient Feature Representation for Modulation Signal: A Cooperative Contrast Learning Approach

Author:

Bai Jing1ORCID,Wang Xu1,Xiao Zhu2ORCID,Zhou Huaji3ORCID,Ali Talal Ahmed Ali2ORCID,Li You4,Jiao Licheng1ORCID

Affiliation:

1. Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi’an, China

2. College of Computer Science and Electronics Engineering, Hunan University, Changsha, China

3. National Key Laboratory of Electromagnetic Space Security, Jiaxing, China

4. AI Group, Guangdong Laboratory of Artificial Intelligence and Digital Economy (Shenzhen), Shenzhen, China

Funder

National Natural Science Foundation of China

Key Research and Development Program of Shaanxi Province

Aeronautical Science Foundation of China

Shenzhen Science and Technology Program

Basic and Applied Basic Research Foundation of Guangdong Province

Key Program of National Natural Science Foundation of China

National Key Laboratory of Electromagnetic Space Security

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modified receiver architecture in software-defined radio for real-time modulation classification;EURASIP Journal on Advances in Signal Processing;2024-07-16

2. Encrypted Traffic Classification Framework Based on Albert;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

3. Uncovering the Authentic RF Fingerprint: Exploiting Random Window Slicing and Complex-Valued Network;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

4. An Interpretable Explanation Approach for Signal Modulation Classification;IEEE Transactions on Instrumentation and Measurement;2024

5. Generative Model With Sinkhorn–Knopp Loss for Unsupervised Signal Modulation Clustering;IEEE Transactions on Industrial Informatics;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3