IoTSL: Toward Efficient Distributed Learning for Resource-Constrained Internet of Things

Author:

Feng Xingyu1ORCID,Luo Chengwen1ORCID,Chen Jiongzhang1,Huang Yijing1,Zhang Jin1ORCID,Xu Weitao2ORCID,Li Jianqiang1ORCID,Leung Victor C. M.1ORCID

Affiliation:

1. National Engineering Laboratory for Big Data System Computing Technology, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China

2. Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong

Funder

National Natural Science Foundation of China

Stable Support Plan for Higher Education Institutions in Shenzhe

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Computer Networks and Communications,Computer Science Applications,Hardware and Architecture,Information Systems,Signal Processing

Reference46 articles.

1. Federated learning with non-iid data;zhao;arXiv 1806 00582,2018

2. Aggregation service for federated learning: An efficient, secure, and more resilient realization;zheng;IEEE Trans Dependable Secure Comput,2022

3. Federated Learning: Challenges, Methods, and Future Directions

4. Secure and Efficient Federated Learning for Smart Grid With Edge-Cloud Collaboration

5. Time-Constrained Ensemble Sensing With Heterogeneous IoT Devices in Intelligent Transportation Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RCIF: Toward Robust Distributed DNN Collaborative Inference Under Highly Lossy IoT Networks;IEEE Internet of Things Journal;2024-08-01

2. Convergence Rate Maximization for Split Learning-based Control of EMG Prosthetic Devices;2024 International Conference on Intelligent Environments (IE);2024-06-17

3. GAN-Enhanced Vertical Federated Learning System for WHAR with non-IID Data;NOMS 2024-2024 IEEE Network Operations and Management Symposium;2024-05-06

4. On the Interplay of Artificial Intelligence and Space-Air-Ground Integrated Networks: A Survey;IEEE Open Journal of the Communications Society;2024

5. Investigation on Preserving Privacy of Electronic Medical Record using Split Learning;Procedia Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3