DRL-Based Secure Aggregation and Resource Orchestration in MEC-Enabled Hierarchical Federated Learning

Author:

Zhao Tantan1ORCID,Li Fan1ORCID,He Lijun2ORCID

Affiliation:

1. Shaanxi Key Laboratory of Deep Space Exploration Intelligent Information Technology, School of Information and Communications Engineering, Xi’an Jiaotong University, Xi’an, China

2. School of Information and Communications Engineering, Xi’an Jiaotong University, Xi’an, China

Funder

Science and Technology Major Project of Xinjiang Uygur Autonomous Region

Natural Science Basic Research Plan in Shaanxi Province of China

Natural Science Foundation of Sichuan Province

Fundamental Research Funds for the Central Universities

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Computer Networks and Communications,Computer Science Applications,Hardware and Architecture,Information Systems,Signal Processing

Reference41 articles.

1. Motivating Workers in Federated Learning: A Stackelberg Game Perspective

2. Dynamic Spectrum Sharing for Load Balancing in Multi-Cell Mobile Edge Computing

3. A Sustainable Incentive Scheme for Federated Learning

4. Privacy-preserving deep learning;shokri;Proc ACM CCS,2015

5. Optimal auctions through deep learning;duetting;Proc Int Conf Mach Learn (ICML),2019

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Resources-Efficient Adaptive Federated Learning for Digital Twin-Enabled IIoT;IEEE Transactions on Network Science and Engineering;2024-07

2. Federated Deep Reinforcement Learning for Task Offloading in Digital Twin Edge Networks;IEEE Transactions on Network Science and Engineering;2024-05

3. A PPO-Based Dynamic Asynchronous Semi-Decentralized Federated Edge Learning;2023 IEEE 29th International Conference on Parallel and Distributed Systems (ICPADS);2023-12-17

4. FL_GIoT: Federated Learning Enabled Edge-Based Green Internet of Things System: A Comprehensive Survey;IEEE Access;2023

5. Low-Latency Hierarchical Federated Learning in Wireless Edge Networks;IEEE Internet of Things Journal;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3