Gradient Scheduling With Global Momentum for Asynchronous Federated Learning in Edge Environment

Author:

Wang Haozhao1ORCID,Li Ruixuan1ORCID,Li Chengjie1,Zhou Pan2ORCID,Li Yuhua1ORCID,Xu Wenchao3ORCID,Guo Song3ORCID

Affiliation:

1. School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China

2. School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China

3. Department of Computing, The Hong Kong Polytechnic University, Hong Kong

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Research Grants Council of the Hong Kong Special Administrative Region, China

Hong Kong RGC Research Impact Fund

General Research Fund

Shenzhen Science and Technology Innovation Commission

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Computer Networks and Communications,Computer Science Applications,Hardware and Architecture,Information Systems,Signal Processing

Reference49 articles.

1. Petuum: A framework for iterative-convergent distributed Ml;dai;arXiv 1312 7651,2013

2. More effective distributed Ml via a stale synchronous parallel parameter server;ho;Proc 27th Annu Conf Neural Inf Process Syst,2013

3. On variance reduction in stochastic gradient descent and its asynchronous variants;reddi;Proc Annu Conf Neural Inf Process Syst (NIPS),2015

4. Large scale distributed deep networks;dean;Proc 26th Annu Conf Neural Inf Process Syst,2012

5. Deep gradient compression: Reducing the communication bandwidth for distributed training;lin;arXiv 1712 01887,2017

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Federated Learning With Non-IID Data: A Survey;IEEE Internet of Things Journal;2024-06-01

2. Towards Efficient Asynchronous Federated Learning in Heterogeneous Edge Environments;IEEE INFOCOM 2024 - IEEE Conference on Computer Communications;2024-05-20

3. To Distill or Not To Distill: Towards Fast, Accurate and Communication Efficient Federated Distillation Learning;IEEE Internet of Things Journal;2024

4. Grouped Federated Learning Algorithm Based on Non-IID Data;2023 4th International Conference on Machine Learning and Computer Application;2023-10-27

5. Resources Scheduling for Ambient Backscatter Communication-Based Intelligent IIoT: A Collective Deep Reinforcement Learning Method;IEEE Transactions on Cognitive Communications and Networking;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3